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Abstract—Understanding the directed interactions between
brain regions is critical for analyzing neuro-degenerative diseases
like Alzheimer’s (AD). Traditional functional connectivity (FC)
methods capture statistical associations but fail to infer causal
relationships, limiting their ability to reveal structural disruptions
in disease progression. In this exploratory work, we propose
a causal graph inference and spectral analysis framework for
EEG signals. Specifically, we leverage Granger causality and
spectral graph methods to construct and analyze the effective
connectome (effectome) of the brain. Our work reveals that
AD networks exhibit lower algebraic connectivity (λ2), reduced
modularity (eigenvalue gaps), and increased structural sensitivity
to perturbations, compared to healthy individuals. Additionally,
a study of temporal dynamics over the inferred networks shows
reduced and local node volatility patterns over time for AD brain
networks.

I. INTRODUCTION

Study of effective connectivity through cause-effect rela-
tionships can aid in the study of second-order effects of, say,
localized degeneration where a disease affects one region of
the brain but its effects are seen elsewhere. Using (causal)
interventions, this can aid the study of changes in overall
behavior when connectivity between two nodes is disrupted.
This motivates the key objective behind this project.

We aim to address the following broad research questions,
primarily intended as a framing device for our work:

• RQ1: Can we reliably generate a connectivity model of
the brain by applying causal methods on EEG time-series
data?

• RQ2: Can we use spectral graph analysis to identify
the differences in properties of the brain network within
healthy individuals and patients with a neuro-degenerative
disease (specifically, Alzheimer’s)?

• RQ3: Can we expand this method to other datasets out-
of-the-box?

Below is the approach taken to achieve the goals stated
above:

• Collect EEG data signals for healthy individuals and
patients with Alzheimer’s Disease (AD), and preprocess
this data to match resolutions and filter higher frequencies

• Perform preliminary analyses on EEG data to study their
characteristics

• Use causal modeling to generate an adjacency matrix for
brain network - explore the use of Granger Causality

and other information-theoretic (IT) measures to capture
complex dynamics

• Perform spectral analysis on the constructed graph using
its Laplacian & obtain a Jordan decomposition. Analyze
the Fiedler eigenvalue to study the algebraic connectivity
of the graph and understand the emergence of communi-
ties in the network

• Run windowed analysis of EEG signals, and construct
a multi-layer network to study temporal dynamics like
node and edge volatility

• Use a diffusion kernel to simulate stimulus responses in
the network

While the methods are designed to be generalizable, the
current work only discusses them in the light of one dataset,
thereby constraining the graph size to the number of regions
within that data. The architecture, along with the effectomes
generated, is shown in Figure 1.

Some of the key findings are given below:
• While each brain structure is unique, distinguishable fea-

tures exist in the effectome between healthy individuals
and AD patients

• Eigengaps and eigenvalues (specifically the Fielder value,
λ2) obtained through the spectral analysis show the
healthy network being more robust to perturbations
(changes in structure), and the AD network sensitive

• Temporal dynamics show node and edge volatility pat-
terns which suggest AD brain networks exhibit reduced
variability compared to healthy brain networks

II. DATA, EXPERIMENTS & RESULTS

For this work, we consider two EEG datasets - Vichietti
(MV) [1] and Miltiadous (AM) [2]. As part of an ongoing
effort, we are also experimenting with custom temporal sum-
mation of pain dataset (TSP). The presented results are from
tests using the MV dataset for a randomly chosen subject in
both the healthy and AD groups. Specifically, the data has
19 nodes, with 1024 samples acquired at resting state with a
sampling rate of 128Hz, and total duration 8 seconds.

A. Preliminaries

Consider xn[t], a discrete time series on node vn in graph
G = (V,E,W ), where n indexes the nodes of the graph and t
the time samples. Let N be the total number of nodes and K
be the total number of time samples, and x[t] ∈ CN represents
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Fig. 1. System Architecture. We estimate the causal structure of the brain from EEG signals, and run analyses to study its properties.

the graph signal at time t. We generate the effectome graph G,
with edges E and weights W determined through statistical
tests. Within W , wij represents the weight of the edge between
nodes i and j.

B. Network Construction
We construct the effectome weight matrix W through causal

inference with Granger causality. The heatmaps are presented
in Figure 2. We observe a lack of connectivity from the
T6 and T5 regions (posterior temporal and parietal occipital
junctions) in AD, which signifies impaired memory retrieval
and language comprehension. F8 and Fz have higher connec-
tivity, suggesting possible compensatory mechanisms at play.
Generally, while the healthy network is more uniform, we
observe stronger causation in AD brain networks, showing
increased and disorganized connectivity likely due to patho-
logical processes resulting from the disease (figure 4). These
results are also supported by prior works [3]–[5]. As a part of
ongoing work, we are looking into other popular information-
theoretic measures like Transfer Entropy (TE) [6], [7] and
Permutation Entropy [8]. Preliminary results with TE (Figure
3) show sparser AD brain network compared to healthy brain
networks.

C. Network Analysis
We analyze the properties of the constructed graph G by

looking at centrality, spectral decomposition, and study its
dynamics.

1) Centrality measures : Figure 5 shows the centrality
measures grouped by major regions. Typical brain activity
happens in the posterior regions, but a higher eigenvector
centrality in case of AD patients in the frontal region suggests
a compensatory mechanism, likely due to loss of function in
the posterior regions [3]–[5].

2) Spectral Analysis: An eigendecomposition of the Her-
mitian Laplacian matrix of G allows us to study its response
under variations, especially when perturbed. Specifically, we
are interested in the Fiedler value (FV) λ2.

For the healthy brain network, the eigenvalues are larger,
particularly in lower indices, indicating a more well connected
and modular network structure. This is supported by λ2 ≈ 0.5
(µ = 0.44, σ = 0.23 across all subjects). On the other
hand, for the AD brain network, the eigenvalues are more
closely spaced, suggesting reduced connectivity or weakened
modularity in the network. This may reflect the loss of func-
tional integration across brain regions. This is supported by
λ2 ≈ 0.3 (µ = 0.38, σ = 0.13 across all subjects), indicating a
network comparatively more sensitive to perturbations. These
findings are also supported through the Jordan decomposition,
where the diagonals have a smoother gradient in healthy brain
networks compared to the AD brain network. With Transfer
Entropy, the λ2 values are 0.83 and 0.57 for healthy and AD
brains respectively, which remain largely consistent with our
prior observations.

3) Temporal Dynamics: Multi-layer networks constructed
using a rolling-window analysis (window size = 256, step size
= 128) enable us to examine edge and node volatility over
time. We observe that nodes within the AD brain network
exhibit lower volatility compared to those in a healthy brain
network, suggesting reduced flexibility in dynamic brain activ-
ity in AD patients. This is also consistent with the finding that
AD disrupts functional connectivity and reduces variability
[9]–[12]. In addition, our analysis of stationarity revealed
that healthy EEG recordings were partially non-stationary,
with several nodes displaying significant temporal fluctuations,
whereas AD signals were predominantly stationary across
nodes. The presence of non-stationarity in healthy brains
points to richer temporal dynamics and greater functional
adaptability, whereas the stationary nature of AD recordings
suggests a pathological stabilization and diminished capacity
for network reconfiguration [13].
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(a) Healthy Individual (b) AD Patient

Fig. 2. Heat map of effective connectome strength, obtained using Granger Causality. We can observe a lack of connectivity from the T6 and T5 regions
(posterior temporal and parietal occipital junctions) in AD, which signifies impaired memory retrieval and language comprehension. Interestingly, F8 and Fz
have higher connectivity, which shows possible compensatory mechanism at play

(a) Healthy Individual (b) AD Patient

Fig. 3. Heat map of effective connectome strength, obtained using Transfer Entropy. Each heatmap shows directed information transfer between EEG channels,
with sources along the x-axis and targets along the y-axis. Warmer colors indicate stronger information flow. AD brains exhibit sparser and weaker transfer
entropy connections compared to healthy brains, suggesting disrupted directed functional connectivity.

(a) Healthy Individual (b) AD Patient

Fig. 4. Plot of the directed effective connectome, obtained using Granger Causality. Opacity signifies strength of connection, with the most opaque one
showing the strongest connection. We observe stronger causation in AD brain networks, showing increased and disorganized connectivity, likely due to the
pathological processes resulting from the disease. In contrast, the healthy brain network is more uniform
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(a) Healthy Individual (b) AD Patient

Fig. 5. Centrality measures grouped by regions. Typical brain activity happens in the posterior regions, but a higher eigenvector centrality in case of AD
patients in the frontal region shows a compensatory mechanism at play, likely due to loss of function in the posterior regions

(a) Healthy Individual (b) AD Patient

Fig. 6. Topographical maps of node volatility across the scalp for (a) healthy individual and (b) AD patient. Node arrangement follows the standard International
10-20 format for EEG acquisition. Volatility is measured as the variance of node activity over time. Healthy individuals exhibit broader and higher volatility
levels, while AD patients have it reduced and more spatially localized (note the changes in scale), indicating a disruption in dynamic network stability.
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(a) Healthy Individual

(b) AD Patient

Fig. 7. Temporal evolution of node volatility across sliding windows for (a) Healthy individual and (b) AD patient. Each scalp map represents node-wise
volatility at a specific time window. Healthy individuals display more spatially diverse and dynamic changes in volatility over time, while AD patients exhibit
more local and reduced volatility patterns. As with Figure 6, note the changes in scale between healthy and AD subjects.
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