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Abstract

During the COVID-19 pandemic, a major driver of new
surges has been the emergence of new variants. When a new
variant emerges in one or more countries, other nations mon-
itor its spread in preparation for its potential arrival. The im-
pact of the new variant and the timings of epidemic peaks in
a country highly depend on when the variant arrives. The cur-
rent methods for predicting the spread of new variants rely on
statistical modeling, however, these methods work only when
the new variant has already arrived in the region of interest
and has a significant prevalence. Can we predict when a vari-
ant existing elsewhere will arrive in a given region? To ad-
dress this question, we propose a variant-dynamics-informed
Graph Neural Network (GNN) approach. First, we derive the
dynamics of variant prevalence across pairs of regions (coun-
tries) that apply to a large class of epidemic models. The dy-
namics motivate the introduction of certain features in the
GNN. We demonstrate that our proposed dynamics-informed
GNN outperforms all the baselines, including the currently
pervasive framework of Physics-Informed Neural Networks
(PINNs). To advance research in this area, we introduce a
benchmarking tool to assess a user-defined model’s predic-
tion performance across 87 countries and 36 variants.

Code — https://github.com/itssmutnuri/gnnvariants

Introduction
The COVID-19 pandemic presented an unprecedented
global health crisis, severely affecting millions of people
worldwide and demanding swift and effective responses
from governments and healthcare providers (Organization
2023b). As the pandemic progressed, multiple variants of
COVID-19 emerged, each possessing genetic mutations that
can significantly impact transmissibility, virulence, and even
vaccine efficacy. During much of the COVID-19 epidemic,
the surge in cases and severe outcomes (hospitalizations and
deaths) have been driven by the emergence of new vari-
ants (Wiemken et al. 2023). Consequently, monitoring the
emergence and spread of these variants is crucial for de-
vising appropriate public health measures and optimizing
containment strategies (Organization 2023a). A critical fac-
tor driving the surge in a given region is the arrival time
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of the new variant (Markov et al. 2023). We can observe
how a new variant, that has not appeared in region A yet,
spreads in region B. We can study the spread in the region
B to understand the properties of this new variant. If it is a
highly transmissible or immune-evading variant (Lambrou
et al. 2022), we can expect it to spread in the region A even-
tually. However, precisely when it would happen in region
A remains unknown. Making a good prediction of arrival
time would lead to more effective preparation and resource
management.

We focus on the problem of predicting the arrival of a
new variant in a given region provided that it has appeared
somewhere else. Due to testing delays and the fact that not
all cases are genomically analyzed, it is difficult to pin down
when a variant arrives. Therefore, we consider measuring
the delay to reach a certain proportion of prevalence.

Figure 1 shows the proportions of different variants over
time in the United Kingdom and Sweden. We can see that
there is often a clear delay (see 20.Alpha.V1 and 21.J.Delta)
in arrival of the variants in Sweden. Furthermore, a variant
may start to spread, but quickly get dominated by another
variant before it reaches a significant proportion of the cir-
culating cases (e.g., 21.A.Delta in Figure 1). Therefore, we
reformulate the problem as the following:

Problem 1 (Emergence Delay Prediction) Given the pro-
portion of a variant in regions A1, A2, . . . , predict when the
variant will reach a proportion of θ in region B, provided
that this variant has not yet reached region B.

Here, the term “proportion” refers to the fraction of new
cases created by the variant under consideration out of total
new cases. Note that this is a regression problem – we seek
to predict a quantity, which is the delay between the current
date and the date of reaching the desired threshold. Further,
we wish to perform this prediction for a given region before
any sample of the variant of interest is observed there.

Prior works have focused on the problem of predicting
the prevalence of a variant when it has already arrived in the
region of interest (Sun et al. 2020; Hu et al. 2020). Specifi-
cally, logistic regression turns out to provide a good estimate
of the prevalence over time (Shah et al. 2021; Palaniappan,
V, and David 2022). However, these techniques require the
variant to have a non-zero proportion already in the region
of interest. To the best of our knowledge, no prior work ex-
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Figure 1: Plots showing the prevalence of a few different
variants of COVID-19 over time in the UK and Sweden.
The beginning of the spread of new variants can differ across
countries by several weeks. This can be seen when examin-
ing “20I.Alpha.V1” and “21J.Delta” variants in the provided
plots, showing their appearance in the UK several weeks be-
fore reaching Sweden.

ists predicting when the delay reaches a certain prevalence
even when there is zero prevalence in the region.

When a new variant emerges with evolutionarily favor-
able properties, it can only be transferred to a different re-
gion through a host (in the case of COVID-19 – a human).
This encourages the idea of using an underlying network of
mobility to address the proposed problem. Since reaching
a certain prevalence may depend on other currently circulat-
ing variants, their dynamics (how fast one variant can spread
over others) also play a role. Therefore, we propose a vari-
ant dynamics-informed Graph Neural Network (GNN) that
utilizes a network of mobility and features inspired by vari-
ant dynamics to solve the proposed problem. This is differ-
ent than typical Physics-Informed Neural Networks (PINNs)
where dynamics act as a regularization for the loss (Raissi,
Perdikaris, and Karniadakis 2019a). Here, we show that
our approach of constructing appropriate features results in
lower errors compared to the PINNs approach.

Our key contributions represent a novel effort in address-
ing the challenge of predicting the emergence of COVID-19
variants at a global level, and in doing so establishing a new
benchmark for evaluating Delay Prediction on the “CoVari-
ants” dataset (Hodcroft 2021). We expect that this bench-
mark will help build the capacity to predict arrival times of
the future variants of COVID-19 and other outbreaks. More
specifically, our contributions are as follows:

1. We develop novel adaptations of GNNs that account
for complex inter-dependencies between countries using
GNNs while incorporating variant delay dynamics at the
node level. To the best of our knowledge, we are the first

Figure 2: Sample semi-log plots of (a) 21J.Delta vs
20I.Alpha.V1 and (b) 21K.Omicron vs 21J.Delta for United
Kingdom from data in the CoVariants dataset.

to derive these delay dynamics for variants. Experiments
demonstrate that our approach leads to superior results
compared to several Machine Learning (ML) methods,
including the currently pervasive framework of PINNs
that integrate dynamics in the loss function.

2. We make our evaluation pipeline publicly available so
that it can be used to evaluate any user-defined PyTorch
model. This will advance public health research and en-
able public health experts and policymakers to leverage
this benchmark pipeline for improvement of their models
and consequently, for enhancing global health outcomes.

Related Work and Background
Variants and Variant Dynamics
In the context of infectious diseases, the term “variant”
refers to a version of a virus with some changes in its genetic
material, known as genome (for Disease Control and Preven-
tion 2023). These changes happen through genetic mutations
and can affect the virus’s characteristics, like how easily it
spreads, how severe the illness it causes is, and whether it
can evade the immune system or not. Variants can be cate-
gorized in multiple ways based on genetic differences, and
the significance of these differences can vary. Some cate-
gorizations focus on a common ancestor, while others may
specifically highlight mutations in key regions of the virus’s
genome. In our study, we rely on the categorizations pro-
vided by the CoVariants dataset (Hodcroft 2021).

Furthermore, the proportions of different variants can be
analyzed over time. Some studies have observed that these
proportions follow a straight line when plotted on a semi-
logarithmic scale. They leverage this fact to understand the
dynamics of variant prevalence in populations (Beesley et al.
2023). We also observe this in our data as shown in Figure 2.
However, to the best of our knowledge, existing studies do
not derive any dynamics capable of predicting delays in the
emergence of variants between multiple regions/countries.

Graph Neural Networks and Epidemics
Many efforts were made to develop forecasting models ca-
pable of predicting the progression and future trends of the
COVID-19 pandemic (Cramer et al. 2022; Sherratt et al.
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2023; J et al. 2020). However, these forecasting approaches
have primarily focused on predicting the spread of the virus
rather than predicting delays in variant emergence. Predict-
ing the timing of variant-specific outbreaks can significantly
enhance public health preparedness and response strategies,
allowing for timely interventions such as targeted vaccina-
tion campaigns and tailored public health measures (Orga-
nization 2023a).

Many Deep Learning (DL) techniques have been explored
for this purpose, including GNNs which help capture the
graph effects of the spread of infectious diseases over time
across regions (Scarselli et al. 2008; Davahli et al. 2021;
Gao et al. 2021; Panagopoulos, Nikolentzos, and Vazir-
giannis 2021; Ganesan and Subramani 2021). Other meth-
ods like PINNs (Seo, Meng, and Liu 2019; Seo and Liu
2019; Raissi, Perdikaris, and Karniadakis 2019b), agent-
based models (Chopra et al. 2022, 2021), and a combina-
tion of spatio-temporal networks with location-aware fea-
tures (Deng et al. 2019), including mobility data (Kapoor
et al. 2020) have also been used.

Instead of only predicting virus spread, as others have
done, we aim to predict when a new variant will emerge in
a region given that it has emerged elsewhere. This involves
deriving dynamics of variant spread and integrating these
insights into a GNN. Notably, our strategy revolves around
crafting relevant features rather than altering the loss func-
tion, providing a distinctive and effective approach.

Methodology
Dynamics-based Model
First, we develop an understanding of the dynamics that play
a role in the spread of a new variant and how we can utilize
them to make informed predictions. We start by extracting
each variant’s global growth rate from observed data. This
value provides an indication of the dominance of the variants
over other competing ones. Subsequently, we construct lin-
ear models based on the dynamics of infectious diseases and
the derived growth rates to predict delays between regions,
establishing this Dynamics-based Model as our baseline for
Delay Prediction. Finally, we consider different approaches
in which we can incorporate some disease dynamics using
GNNs that are chosen for their ability to intuitively model
spatial dynamics, with the goal of enhancing the prediction
accuracy of our model.

Throughout the text, we use the terms “prevalence” and
“prevalence ratio”, where the “prevalence”, p, is the propor-
tion of cases of a given variant, and the “prevalence ratio” is
defined as rij = pi

pj
, where pi is the prevalence of the vari-

ant i, and pj is the prevalence of the most prevalent variant,
j, that is not i. In our experiments, a variant is considered
dominant if it reaches an rij value of at least 1

3 . We define
this value as the dominance threshold, θ.

Variant Growth Rates We first derive the dynamics of
two competing variants in one region. While logistic regres-
sion has been widely used to fit these dynamics, for com-
pleteness, we show in (Aawar et al. 2024) that the prevalence
ratio between two variants i and j can be approximated by
equation:

ln(rij(t)) =
t

b
ln(βij) + ln(rij(0)) = Sijt+ C (1)

Here, constant b is the mean serial interval – the average
time between two successive infections, and βij is the ratio
of transmission rates between the two competing variants.
Parameter Sij can be referred to as the relative growth rate
of variant i over variant j (Srivastava 2023). Consider a sce-
nario in two regions A and B — A has variant i emerging
over the previously dominant variant j, but variant j never
reached region B where variant k is dominant. This makes
it difficult to assess the potential impact of variant i on re-
gion B when we only know Sij . We address this by noting
that the parameter Sij should ideally be independent of the
region. However, this may not hold due to the simplifying
assumptions to derive Equation 1. Therefore, we introduce
region-specific relative growth rates S

(q)
ij for each region

q and find the growth rate of any variant i relative to a fixed
variant 0, specifically, the original COVID-19 variant. This
is independent of any region and is defined as the global
growth rate of variant i, denoted as Si (Aawar et al. 2024).
Finally, based on the global growth rates, we define global
relative growth rates Sij as Si − Sj .

Now, for a pair of regions X and Y , the delay τ can be
shown to be :

τ =
Skj

SijSik
ln

(
θ

1− θ

)
− Skj

SijSik
C ′

X +
C ′

X − C ′
Y

Sij
(2)

where θ is a given prevalence and C ′
X and C ′

Y are the pa-
rameters for linear regression. This expression serves as the
foundation for our Dynamics-based Model baseline. The full
derivation can be seen in (Aawar et al. 2024).

This is a pairwise linear model that estimates the delay be-
tween only two regions rather than predicting the delay for a
region with respect to all other regions. Algorithm 1 details
how we compute the date at which a variant arrives in a re-
gion Y . We calculate the median of the outputs from all pair-
wise models from regions Xq to region Y . We evaluate the
performance of all the models (Xq, Y ) until the current date
and select the top three performing source regions among
X1, X2, . . .. Notably, the best performance here refers to the
lowest error in predicting the delay. We identify three source
regions that produced the lowest error in predicting the de-
lays at t − 1. Then, we take the median of the predictions
produced by these selected models at time t which repre-
sents the delay at time t for the new variant to appear in
region Y .

Dynamics-Informed GNN
Key Idea: We observe that global growth rates Si play a cru-
cial role in the dynamics. Furthermore, based on Equation 1,
under some assumptions, the logarithm of the prevalence ra-
tio rij grows linearly with time. We hypothesize that using
ln(rij) and S as features simplify the underlying patterns
to be learned by an ML algorithm. An ML algorithm may
also complement any violations of the assumptions made in
the dynamics-based model. We propose a GNN-based net-
work for this problem as GNNs are adept at capturing spatial
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Algorithm 1: Dynamics-based Arrival Date Computation

1: for Xq in {X1, X2, . . . }t do
2: Calculate and store delay predictions for (Xq, Y ) un-

til the current date, t.
3: if t ̸= 0 then
4: Select top 3 Xq with the best performance at t− 1
5: else
6: Select all source regions {X1, X2, . . . }t
7: Find the median of delay predictions for selected models
8: return Median delay as the estimated arrival date for

the variant in region Y at time t

Figure 3: Graph creation process on sample subgraph G: (i)
First, we construct our nodes and edges based on country
connectivity (ii) Next, we account for temporal variations in
the relations between countries, i.e. the edges, to get Gt (iii)
Finally, we find the variant specific features to get our final
graph Gt,v . Both (ii) and (iii) are for t = July 2nd, 2021.

relationships, making them well-suited for problems where
geographical proximity between regions, such as countries,
plays a crucial role. Additionally, the problem induces a
natural graph structure, where countries can be represented
as nodes with edges denoting some relationship between
the countries. Furthermore, we explore different techniques
to incorporate disease dynamics into the GNN in an effort
to capture the complex interactions and patterns associated
with the spread of infectious diseases.

Graph Construction The graph construction is illustrated
in Figure 3. First, we represent each country as a node in
the graph, and edges are established to represent relation-
ships between the countries. There are 87 countries in which
at least one variant appears and becomes dominant in the
CoVariants dataset (Hodcroft 2021). The dataset provides
the state of variants and mutations of interest for COVID-
19 from August 2020 through October 2023. It has a bi-
weekly resolution for 36 variants starting from 20A.EU1 to
23F.Omicron. While not shown in Figure 3, self-loops are
included to account for internal transmissions.

Next, we consider the temporal aspect of the problem. The
graph may evolve over time to capture changing relation-
ships or influences among countries. This is introduced into
our graph as dynamic edge weights based on border con-
trol data in the “OxCGRT” dataset (Hale et al. 2021). This
dataset is from January 2020 to January 2023 measuring the
variations in government responses using their COVID-19
Government Response Stringency Index, which is a simple

additive score of nine indicators ranging from school clo-
sures to vaccination policies. Of these indicators, we picked
international travel closure controls since they best capture
the emergence and cross-border transmission of variants.
These values are encoded in an ordinal scale as follows: 0
- no measures, 1 - screening, 2 - quarantine on high-risk re-
gions, 3 - ban on high-risk regions, 4 - total border closure.
The recorded values were then scaled down to a range be-
tween 0.1 and 1, with 1 indicating no border restrictions and
0.1 representing complete border closure. Note that 0.1 was
chosen over 0, acknowledging the possibility of some mo-
bility between connecting countries due to necessary trade
or border crossings via open land routes. Given that our
CoVariants data extends beyond January 2023, we extend
OxCGRT by assuming that all border restrictions have re-
mained unchanged since Jan 8, 2023.

To obtain the full graph, we create multiple copies of the
above graph representing regions and inter-connectivity –
one per variant at a given timestamp t. This approach al-
lows us to leverage variant-specific dynamics as our node
features. At t, each node c has features consisting of a
time series of the logarithm of prevalence ratios rij of a
present variant i and the most prevalent variant j ̸= i,
spanning T time steps. This results in a vector r⃗c,i =[
ln

(
rt−T
ij

)
, ln

(
rt−T+1
ij

)
, . . . , ln

(
rtij

)]
. The corresponding

Si value of the variant i is then concatenated to form each
node’s final feature vector [r⃗c,i|Si].

Feature Augmented Graph Convolutional Network (FA-
GCN) To extract both temporal and geographical infor-
mation of the data, we propose a hybrid architecture sum-
marized in Figure 4a. In this model, we employ a simple
Gated Recurrent Unit (GRU) (Cho et al. 2014) to extract
temporal information of the variant transmissions in T time
steps. We temporarily remove the growth rate Si (which is
not time-dependent) from node features and embed the 1-
dimensional (1D) time-dependent features (prevalence ra-
tios) into a 2D latent feature vector. Note that in this config-
uration, we embed the features separately for each country,
treating the nodes as distinct input samples grouped into a
single batch, resulting in a 3D latent feature vector. The 3D
latent feature vector is then flattened to obtain a final 2D em-
bedding, which serves as input for a one-layer Graph Convo-
lutional Network (GCN). The Leaky ReLU activation func-
tion introduces non-linearity after the GCN layer. Addition-
ally, two GraphNorm(Cai et al. 2021) layers are applied after
the GRU and GCN layers for normalization, and dropout is
incorporated after the GCN layer for regularization. Finally,
the embedded features are fed into a Fully Connected (FC)
layer to predict delay until emergence for each country.

Physics Informed GCN (PI-GCN) For comparison, we
use a PINN-inspired (Raissi, Perdikaris, and Karniadakis
2019a) approach to make predictions based on dynamics for
the Delay Prediction task. This model utilizes a 2-layer GCN
architecture, incorporating dropout and two GraphNorm lay-
ers which are applied to the output of each GCN layer, along
with Leaky ReLU activation functions. Typically this GCN
would be trained using a Mean Squared Error (MSE) loss,
but we modify this loss function to steer our GCN towards
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dynamic predictions made by the dynamics-based model.
The adjusted loss function is given by:

MSEadjusted =
1− p

N

N∑
i=1

(ŷi − yi)
2 +

p

N

N∑
i=1

(ŷi − ẏi)
2

(3)

where N is the number of countries, ŷi is our model’s out-
put, yi is the ground truth, and p is a hyperparameter ranging
from 0 to 1, signifying the influence of ẏi, the output from
the dynamics-based model. This modification ensures that,
during training, the model is penalized more when its predic-
tion deviates from the linear model’s prediction, providing a
form of dynamics-informed regularization. The best p value
was found to be 0.1 by grid search.

Training Procedure
All training and validation of the models were performed
retrospectively. This means that the model is trained and
validated at each time step using only the ”observed” data
available up to that time step, denoted as d. For each variant,
the retrospective algorithm iterates through all the biweekly
data associated with that variant, training the model only on
the weeks that have already passed (i.e., the observed data).
Note that the pre-processing is also done retrospectively, ac-
counting for any smoothing, calculation of the S values, or
interpolation in the case of the dynamics-based model. This
ensures that the approach is applicable in a prospective set-
ting, where no data from the future is available.

The train/validation split is also done temporally to en-
sure that validation is performed only on the most recently
observed data. This aims to achieve a better fit to the lat-
est data, enhancing the model’s predictive performance. An
Early Stopper monitors the validation loss and halts the
training when overfitting is detected, signified by a constant
and substantial increase in the validation loss. The Early
Stopper saves the best-performing weights, which are reused
in the next iteration. This practice eliminates the need for the
model to start training from scratch, leveraging knowledge
gained from previous iterations.

We use MSE, or its adjusted version, as the loss function.
Another crucial aspect is how to handle data related to vari-
ants that either do not appear in a given country or appear
but fail to become dominant, i.e. rapidly diminish. In such
cases, where regression targets would be undefined (poten-
tially infinite), we address this challenge by creating a mask.
This mask is employed to conceal nodes corresponding to
these specific variants/country pairs, ensuring they do not
contribute to our training loss. Essentially, our graph models
are not trained on these nodes.

Experiments
Since we are the first to attempt solving this problem, we
provide a benchmarking tool for the community, detailed in
(Aawar et al. 2024). It presents the comprehensive pipeline
employed for retrospective training, validation, and testing
of diverse models. Its design prioritizes user-friendliness, al-
lowing seamless integration of new PyTorch models or di-

rect utilization of scikit-learn models through a configura-
tion file. Users only need to specify whether the model re-
quires graph data, leaving the pipeline to handle the rest. Ad-
ditionally, the data pre-processing is encapsulated in a sep-
arate function, providing users with the flexibility to make
modifications. The evaluation is also done retrospectively.
This means that at time t, the training is performed using
data only available until then to predict the delay for a given
variant in a given country where it has not been seen yet.
Considering the biweekly nature of the data, the target is a
multiple of 2 weeks. Furthermore, evaluations exclude coun-
tries where a variant has already become dominant or never
achieved dominance.

Pre-processing
The initial pre-processing stage aligned the country names
across diverse datasets, with an emphasis on inclusion based
on data availability. Only countries present in all datasets
were retained, ensuring a standardized set for subsequent
analyses. For each country, the prevalence of each variant
was calculated at each timestep. Variants with a prevalence
of less than 5% were disregarded in our analysis. To calcu-
late the prevalence ratios, the two variants with the highest
prevalence were identified for each timestep. For each vari-
ant on that particular day, the prevalence ratio was calcu-
lated. Finally, variants that did not reach a prevalence ratio
of 0.2 or those that were present in less than three coun-
tries were filtered out. These steps ensured that only vari-
ants with a significant presence and wide geographic distri-
bution were included in the subsequent analysis. All subse-
quent pre-processing steps were conducted retrospectively.
This implies that as time progresses, more data is used for
computing the global growth rates (S) and for training.

Results
In this section, we present our key results for Delay Pre-
diction. We previously noted that prior research has con-
centrated on predicting the prevalence of a variant after its
arrival in a specific region, with logistic regression demon-
strating effectiveness in estimating its prevalence over time.
However, as logistic regression can manage this task rela-
tively easily, our evaluation focused solely on forecasting a
variant’s prevalence before its arrival in a specific region. In
other words, during evaluation, we excluded cases where a
variant is present in a region but has not yet reached θ.

Numerous models were tested and configured as bench-
marks to test against the performance of our proposed
method. Other implementations include a trivial Mean
Model, the baseline Dynamics-based Model, a Decision
Tree, a Multilayer Perceptron (MLP), a GRU, and a GCN
without an adjusted loss function. In brief, the Mean Model
predicts delays based on the average delays of all prior vari-
ants between all the countries in which the variant appeared
and our intended country. The Decision Tree, MLP, and
GRU regression models make use of T extra features which
consist of the average r⃗c,i of neighboring countries trans-
forming the dataset into a matrix of size N × (2T + 1).
Here, N = D× V ×C is the total number of samples, D is
the total number of retrospective dates, V is the total number
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Model MedMedAE MedMAE
Mean Model 3.2 3.87

Dynamics-based Model 1.86 2.9
Decision Tree 3.48 3.43

MLP 2.38 2.48
GRU 1.5 1.37
GCN 1.32 1.43

FA-GCN 1.27 1.29
PI-GCN 2.24 2.01

Table 1: Prediction Errors

of variants, and C is the total number of countries. The full
details on these models can be found in (Aawar et al. 2024).

To measure the performance of the models, we use the
defined Mean/Median Absolute Errors (MAE/MedAE) in
(Aawar et al. 2024) and measure the performance over time
by finding the mean and median of these errors as:

MedMAEv = median(MAEv,t),
MedMedAEv = median(MedAEv,t),

where t ranges from 1 to TD, TD being the total number of
timesteps for which variant v circulates before reaching total
dominance, i.e. it globally reaches all its targets and begins
to disappear. Finally, the mean across all the variants v gets
our two error metrics: MedMAE, and MedMedAE.

Table 1 presents the models’ performance metrics for
Delay Prediction. The results indicate that our proposed
FA-GCN model outperforms all other models in terms of
MedMedAE and MedMAE, showcasing its effectiveness in
capturing temporal dependencies for Delay Prediction. The
dynamics-based model also has a significantly worse Med-
MAE than MedMedAE. This suggests that the dynamics-
based model is susceptible to outlier predictions for some
country pairs, which skews its results. Additionally, we ob-
serve that the PI-GCN does not surpass its GCN counterpart,
highlighting the unnecessary use of dynamics as a regular-
ization of the loss when employing the correct features.

Discussion
Results Analysis
Figure 4b provides a detailed representation of the results
for the baseline dynamics-based model and the FA-GCN
model. The heatmaps illustrate the number of countries el-
igible for prediction at each timestamp. The numbers indi-
cate the errors over time for each variant throughout their
existence. Notably, several variants in the dynamics-based
model are denoted by ∗, signifying instances of model or
evaluation failure. These failures stem from three primary
factors. Firstly, the linear model requires a minimum of two
common variants between two countries to build an effective
model. Secondly, the linear model can encounter significant
challenges when variant j is identical in growth rate to vari-
ant k (i.e., Sj = Sk). In such cases, the linear model fits a
plane solely along a fixed axis and will thus always predict
some constant C

Sij
, as seen in Equation 2. But as time passes

and variant j is no longer identical to variant k for another

Model [r|S] r [p|S] p S
Decision Tree 3.48 3.0 2.81 3.0 2.86

MLP 2.38 2.67 2.69 2.55 2.76
GRU 1.50 1.50 1.95 2.32 n/a
GCN 1.32 1.50 1.78 2.32 2.38

FA-GCN 1.27 1.55 1.73 1.73 n/a

Table 2: Feature Ablations MedMedAE

variant, this model fails drastically since it would still fit
on a fixed axis. These scenarios were more prevalent in the
early stages of the pandemic when only a few variants were
circulating, leading to their exclusion from the dynamics-
based model’s training process. To ensure fair comparisons,
all final errors across all models were calculated excluding
these variants. Finally, there are cases where a variant ap-
pears in a country but fails to reach the threshold θ. These
instances were disregarded during the evaluation of all mod-
els as they were considered trivial. The observations from
Figure 4b give us two insights. Firstly, the primary source of
error is associated with variants that persist for an extended
duration, such as 21J.Delta or 23E.Omicron. Examining the
color gradients, these variants appear to linger in only a few
countries before spreading to others. In reality, variants typ-
ically do not endure for such prolonged periods without ei-
ther being superseded by another variant or transmitting to
additional countries (Chen et al. 2023; Health 2023). This
suggests a potential issue in the data capturing these lin-
gering variants. Secondly, despite this being a major source
of error for FA-GCN, it exhibits overall robustness to out-
lier predictions, unlike the dynamics-based model as seen in
Figure 4b. This, in turn, severely affects the results of the
PI-GCN model.

Ablation Study: Dynamics
We examine the usefulness of integrating the extracted dy-
namics as inputs for our models. In this analysis, we train
the same models using different sets of features. Specifically,
we investigate the effectiveness of using S as a feature and
the impact of using a time series of r. Where r excludes
S as a feature, relying solely on the time series of preva-
lence ratios rather than the prevalence p. Additionally, we
investigate the effectiveness of S by comparing [p|S] to p
and utilizing S as the only feature. From the results in Ta-
ble 2, we observe that the [r|S] combination outperformed
all other configurations except for the case of the Decision
Tree. There is also an improvement when utilizing r over
p for the temporal-based models, with the GCN performing
similarly and the others exhibiting poorer performance. This
suggests that the temporal models effectively encode the la-
tent information contained in the time series of r, while the
simpler models struggle to do so. Additionally, inclusion of
S as a feature enhances results across all cases. Combining
S and r significantly improves performance in most cases,
indicating a synergistic effect likely stemming from the lin-
ear relationship between the two, as previously discussed.
It is important to note that the GRU and FA-GCN were not
trained using just S since excluding the time series encoding
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(a) FA-GCN Architecture
(b) The heat maps display both the errors and the number of countries being predicted for each
variant at each timestep until they are no longer dominant anywhere

Figure 4: Visualization of FA-GCN architecture and heat maps for prediction errors.

reduces these models to an MLP and GCN, respectively.

Implementation
The benchmarking pipeline (Aawar et al. 2024) was im-
plemented in Python. This was carried out on a machine
equipped with a 32-core Intel(R) Xeon(R) Gold 5218 CPU
running at 2.3 GHz and 64 GB of RAM. Focusing on the
example of variant 23F.Omicron at a single timestep, which
contains the majority of the data, and the heaviest model
(FA-GCN), the average runtimes for different components
were approximately 32 seconds for data pre-processing, 20
seconds for training, and 0.01 seconds for inference. The
entire retrospective pipeline takes approximately 2 hours to
complete. Notably, the most time-consuming aspect of the
pipeline is the data pre-processing step, which could poten-
tially be optimized further through memorization.

Limitations
One limitation of our approach in addressing the problem
of Delay Prediction lies in handling situations where a vari-
ant might not even become dominant in a given country. To
tackle this issue, we define the following problem:

Problem 2 (Dominance Prediction) Given the prevalence

(proportion) of a variant in regions A1, A2, . . . , predict if
the variant will ever reach a proportion θ in region B.

In future work, we plan to address this issue by adopting
a two-step approach. First, we solve Dominance Prediction,
which aims to predict whether a variant will become domi-
nant in a given region. If the variant is predicted to become
dominant, we can then proceed to solve Delay Prediction.

Conclusion
We addressed the challenges of predicting variant delay
across countries. The derivation of variant dynamics pro-
vided a theoretical foundation, which was used to engi-
neer relevant features as well as a novel baseline dynamics-
based model. We demonstrated that our dynamics feature-
augmented GNN approach outperformed all other meth-
ods. Through comprehensive experiments and analysis, we
demonstrated the effectiveness of our design choices, pro-
viding valuable tools for understanding and predicting the
intricate relationships and connectivity patterns between na-
tions. Furthermore, as we are the first to address the pro-
posed problem, we provided a comprehensive benchmark
and made our full pipeline available in an effort to facilitate
research in the field.
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