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Abstract—Understanding the directed interactions between
brain regions is critical for analyzing neuro-degenerative diseases
like Alzheimer’s (AD). Traditional functional connectivity (FC)
methods capture statistical associations but fail to infer causal
relationships, limiting their ability to reveal structural disruptions
in disease progression. In this exploratory work, we propose
a causal graph inference and spectral analysis framework for
EEG signals. Specifically, we leverage Granger causality and
spectral graph methods to construct and analyze the effective
connectome (effectome) of the brain. Our work reveals that
AD networks exhibit lower algebraic connectivity (λ2), reduced
modularity (eigenvalue gaps), and increased structural sensitivity
to perturbations, compared to healthy individuals. Additionally,
we simulate diffusion processes on the inferred graph topology to
model signal propagation, demonstrating disrupted information
flow in AD-affected networks.

I. INTRODUCTION

Understanding the neural connection network in the brain
(connectome) has been a priority due to the central role it
plays in cognitive tasks. While multiple prior works establish
a detailed atlas of the human brain, these remain limited to
the datasets they work with. Another key issue here is that
most studies have worked to establish functional connectivity
(FC), which provides inter-regional functional relationships.
FC lacks in that it cannot identify asymmetric relationships
between these regions, and the resulting network is represented
using undirected graphs, with nodes as brain regions and edges
between nodes with high functional connectivity. Establishing
a cause-effect relationship between the brain regions can be
crucial in studying the second order effects of, say, localized
degeneration where a disease affects one region of the brain
but its effects are seen elsewhere. This can be achieved through
effective connectivity (EC) which maps the causal influence
of neural activity in a source region on that of a target region.
Using (causal) interventions, this can aid the study of the
changes in overall behavior when connectivity between two
nodes is disrupted (as would be the case in patients with neuro-
degenerative diseases which are not constrained by regions).
This motivates the key objective behind this project.

A. Research Questions & Approach

We aim to address the following research questions:
• RQ1: Can we reliably generate a connectivity model of

the brain by applying causal methods on EEG time-series
data?

• RQ2: Can we use spectral graph analysis to identify
the differences in properties of the brain network within

healthy individuals and patients with a neuro-degenerative
disease (specifically, Alzheimer’s Disease)?

• RQ3: Can we expand this method to other datasets out-
of-the-box?

These questions remain broad, and are intended as a framing
device for our work. While the methods are designed to be
generalizable, the current work only discusses them in the
light of one dataset, thereby constraining the graph size to
the number of regions within that data.

Below is the approach taken to achieve the goals stated
above (Fig. 1):

• Collect EEG data signals for healthy individuals and
patients with Alzheimer’s Disease (AD), and preprocess
this data to match resolutions and filter higher frequencies

• Perform preliminary analyses on EEG data to study their
characteristics

• Use causal modeling to generate an adjacency matrix for
brain network - explore the use of Granger Causality to
capture complex dynamics

• Perform spectral analysis on the constructed graph using
its Laplacian & obtain a Jordan decomposition. Analyze
the Fiedler eigenvalue to study the algebraic connectivity
of the graph and understand the emergence of communi-
ties in the network

• Use a diffusion kernel to simulate stimulus responses in
the network

These steps will be elaborated in Appendix B, including a
detail on the datasets used.

B. Summary Findings

Some of the key findings are given below:
• While each brain structure is unique, distinguishable fea-

tures exist in the effectome between healthy individuals
and AD patients.

• Eigenvalues (specifically the Fielder value, λ2) obtained
through the spectral analysis show the healthy network
being more robust to perturbations (changes in structure),
and the AD network sensitive.

• Healthy brain has larger eigengaps (separations between
consecutive eigenvalues), which indicates a strong, mod-
ular network structure. The AD brain has smaller eigen-
gaps, suggesting reduced connectivity within the network.

An interesting observation was that while our tests to estab-
lish RQ3 required additional pre-processing steps, these were
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Fig. 1. System Architecture. We estimate the causal structure of the brain
from EEG signals, and run spectral analyses to study its properties.

largely due to the data from the sources not being prepared
for causal analysis. This is further discussed in Appendix B.

II. DATA, EXPERIMENTS & RESULTS

For this work, we consider two datasets - Vicchietti (MV)
[1], Miltiadous (AM) [2]. As part of an ongoing effort, we
are also experimenting with custom temporal summation of
pain dataset (TSP) [3]. Their characteristics are discussed in
Appendix B along with a preliminary analysis of the raw
data. As mentioned in Section I-A, we present results from
tests using the MV dataset. The discussion in the following
subsections is the analysis for a randomly picked patient in
both the Healthy and AD groups. While the AD effectome
generated through the framework is shown in Fig. 1, for
completeness all results are presented in the Appendix.

A. Preliminaries

Consider xn[t], a discrete time series on node vn in graph
G = (V,E,W ), where n indexes the nodes of the graph and t
the time samples. Let N be the total number of nodes and K
be the total number of time samples, and x[t] ∈ CN represents
the graph signal at time t. We generate the effectome graph G,
with edges E and weights W determined through statistical
tests. Within W , wij represents the weight of the edge between
nodes i and j.

B. Network Construction

We construct the effectome weight matrix W through causal
inference. This part addresses RQ1.

Using Granger causality, we build the effectome, (Fig. 7).
At the outset, we see that this is different from the results
of Pearson Correlation (correlation ̸= causation, Fig. 5 and
6). Additionally, we see a lack of connectivity from the T6
and T5 regions (posterior temporal and parietal occipital junc-
tions) in AD, which signifies impaired memory retrieval and
language comprehension. , F8 and Fz have higher connectivity,
suggesting possible compensatory mechanism at play. While
causation reveals a directional graph, we also symmetrize
the matrix to look at both the networks (Fig. 8 and 9). We
observe stronger causation in AD brain networks, showing
increased and disorganized connectivity, likely due to the
pathological processes resulting from the disease. In contrast,
the healthy brain network is more uniform. These results are
also supported by prior works [4]–[6].

C. Network Analysis

We analyze the properties of the constructed graph G
by looking at centrality, spectral decomposition, and study
diffusion processes on this graph. This part addresses RQ2.

1) Centrality Measures: Fig. 12 shows the centrality mea-
sures grouped by the regions described in Appendix B. Typical
brain activity happens in the posterior regions, but a higher
eigenvector centrality in case of AD patients in the frontal
region suggests a compensatory mechanism, likely due to loss
of function in the posterior regions [4]–[6].

2) Spectral Analysis - Fiedler Value: An eigendecomposi-
tion of the Hermitian Laplacian matrix of G allows us to study
its response under variations, especially when perturbed. Fig.
13 shows a plot of eigenvalues, and Fig. 14 shows the graph
colored using the Fiedler value λ2 (FV).

The eigengaps (separations between consecutive eigenval-
ues) can tell us the robustness of the network. In case of
a healthy individual, these are larger, particularly in lower
indices, indicating a more well connected and modular net-
work structure. This is also supported by the FV λ2 ≈ 0.5,
indicating a better global connectivity. This means the network
can remain well-integrated even if some connections are
removed or perturbed. On the other hand, for the AD brain
network, the eigenvalues are more closely spaced, suggesting
reduced connectivity or weakened modularity in the network.
This may reflect the loss of functional integration across brain
regions. Similarly, the FV λ2 ≈ 0.3 indicates a network more
sensitive to perturbations.

3) Spectral Analysis - Jordan Decomposition: A Jordan
decomposition J of the network can help us understand its
sensitivity, and support our findings using λ2 (Fig. 15). In
the healthy network, we see that the diagonals have a smooth
gradient, and the super-diagonal is faint or non-existent sug-
gesting minimal coupling between eigenvectors. This indicates
a more stable network that is robust to perturbations, and
disturbances remain localized. On the other hand, the AD
brain network has several sudden changes in the gradient,
representing increased dependency or disruption in the system.
This indicates a network that is sensitive to perturbations, with
disturbances spreading much further within the network.

4) Diffusion Process: To study diffusion over the network,
we apply an excitation to nodes Pz, Fp1, and F4 to see how
they decay over time. These three nodes are picked at random
(Fig. 16). The results remain consistent with the findings
above, with the healthy brain network showing a smoother
and uniform decay of activations, and the AD brain network
having a non-uniform decay.

III. CONCLUSION & FUTURE WORK

This work presented a framework for generating the brain
effectome for spectral analysis and explored preliminary
findings comparing a healthy brain with one affected by
Alzheimer’s. Future work will focus on enhancing the model’s
robustness to input variations (and other datasets) and extend-
ing causal methods to account for confounders.
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APPENDIX A
RELATED WORKS

The current project covers multiple areas, time series (EEG)
signal processing, causal inference, brain connectomes, and
network analysis (including spectral graph methods).

Analysis of time-series signals can provide a detailed insight
into their nature. Especially, coming to EEG, a key char-
acteristic of this (electro-physiological) data is the presence
of periodic (oscillatory) and aperiodic (arrhythmic) activity.
While the discussion is out of scope for the current work, some
interesting research discussing the emergence of dynamics [7],
[8] using these activities exists, and is left for the reader.

Causal inference [9], [10], at a high level, is establishing a
cause-effect relationship between different variables through
the study of pairwise interactions [11]. Often, we observe
the presence of confounders, an external influence driving the
relationship. The use of causal methods in understanding the
relationship between different neurological processes has been
long studied [12], [13], providing us some insights into the
inner functioning of the brain.

Much prior work also exists in the study of the brain
connectome. Methods like correlation [14], [15], have been
widely used, especially in mapping the functional structure and
studying its properties, using EEG [16]–[18] and fMRI [19],
[20] data. Effective connectome studies rely on causal structure
mapping [21], especially by using Granger Causality [22].
Another approach is by looking at the Directed Acyclic Graphs
(DAGs) using a graphical criterion known as d-separation, as
proposed by Pearl in his seminal work [23].

More recently, scientists at the FlyWire consortium revealed
a detailed connectome map of the common fruit fly, capturing
the neuronal network of its brain [24], [25]. While they also
study some network statistics [26], relevant to the current
work is the exploration of how this model gives way to the
effectome by [27]. Use of the connectome has also been
extended towards studying neuro-degenerative diseases [28],
[29]. Spectral graph methods [30], [31] study the properties
of the network through the eigendecomposition of its matrices.

These works are largely specific to their domain, and do
not tend to work across datasets. The current research aims
to generalize the simulation pipeline so as to generate and
analyze the brain network.

APPENDIX B
METHODOLOGY

A. Data & Characteristics

Electroencephalography (EEG) remains a key tool in non-
invasively capturing brain activity. It is essentially a collection
of time-series data, captured using different sensors (nodes)
placed at various regions of the brain.

For this project, we look at two datasets - Vicchietti
(MV) [1], Miltiadous (AM) [2]. We also consider a custom
temporal summation of pain data (TSP) [3] as part of an
ongoing effort in future work. The MV and AM datasets
contain recordings from both healthy individuals and from

Fig. 2. Electrode placement for the datasets - this is the international 10-20
system with 19 electrodes followed by Vicchietti and Miltiadous

patients with Alzheimer’s Disease (AD), in resting state (eyes
closed). Both follow the the International 10-20 system with
19 electrodes and 2 reference electrodes, as shown in Figure
2. The reference electrodes are only used for establishing the
zero voltage and to establish a channel baseline means, and are
not considered in the analysis. The pipeline primarily uses the
MV dataset, and is evaluated on the AM datasets separately.
Some characteristics are given in Table I. Below are the nodes,
grouped according to regions.

• Frontal: [Fp1, Fp2, F7, F3, Fz, F4, F8]
• Central: [T3, C3, Cz, C4, T4]
• Parietal: [T5, P3, Pz, P4, T6]
• Occipital: [O1, O2]
• 2 reference electrodes: [A1, A2]
While both MV and AM datasets are pre-processed, the data

from AM was not processed for causal analysis, and so was
not able to capture the causal effects properly. This required
framing some causality-preserving pre-processing steps for the
raw data using EEGLAB [32]. Normal filters use both forward
and backward filtering to nullify the phase delays introduced
in the process, but this does not preserve causal relationships.
The custom pre-proc step required the use of a forward-only
filter which preserves these relationships.

Given that the data is a time-series signal, we can employ
multiple ideas from the field of Digital Signal Processing to
study its characteristics. More importantly, we are interested
in studying the frequency spectra of this data (using Fourier
transforms) which shows the components of each frequency
within that signal.

Picking on the periodic components, we observe five distinct
bands of brain waves - Gamma (over 25-30 Hz), Beta (13-25
Hz), Alpha (8-13 Hz), Theta (4-8 Hz), Delta (0.5-4 Hz), which
mark different activities in the brain. It is worth noting that
the data from MV lacks the gamma band.

We now use this data to construct the network using
statistical methods and causal inference. While this is EEG
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TABLE I
COMPARISON OF THE DATASETS.

Vicchietti (MV) Miltiadous (AM)
Groups 12 Healthy & 80 AD subjects 29 Healthy & 36 AD subjects

Sampling rate 128Hz 500Hz
Data dimensions (19, 1024) (19, 299900)

Bands 0.5 – 30 Hz 0.5 – 45 Hz

data, given the nature of our analysis pipeline, we can also use
other time-series data such as BOLD (collected from fMRIs)
[19]. This testing is out of scope for the current work.

Figure 3 shows a sample of the raw EEG time-series
recordings from one patient, with the AD one showing more
variance. Using Fourier transform, we look at the frequency
spectra in Figure 4. We observe the healthy individuals have
more activity in lower frequency bands.

B. Network Construction

While establishing the effectome weight matrix W through
causal inference remains the primary objective, we also em-
ploy Pearson Correlation to build the functional connectome
and validate network connections.

1) Pearson Correlation: The Pearson Correlation (PC) is
commonly used to measure the linear correlation between
two sets of data, and is a normalized measurement of their
covariance, ranging between [-1,1] [33]. When used on brain
networks, we obtain functional connectivity. This is described
by r:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(1)

where n is the total number of data points for the variables;
xi, and yi are individual data point from variable X and Y ;
x̄, and ȳ their means.

The results are shown in Figure 5 for one patient and 6
across all patients. The graph shows network connectivity
between different regions, albeit with varied strengths between
the healthy/AD brains. The frontal region shows higher inter-
connectivity.

2) Causal Inference: While multiple methods exist for
Causal inference, a common approach is to use Granger
Causality (GC) [34], [35], which simply put, is to check if a
variable X granger causes another variable Y , by determining
if the inclusion of past observations (determined by maximum
lag) of the cause reduces the prediction error of the effect using
(multi-vector) auto regressive (MVAR) models [36]–[38]. At
the most basic version, we pick the elements pairwise, and
test the strongest direction of the causal effect [39].

We notate the causation as X
G−→ Y . The null hypothesis

H0 remains that one variable does not granger cause the other.
To run the tests, we build two models, without and with Xt,

the variable X at time t. These are shown by equations 2 and
3.

Yt = α+

p∑
i=1

βiYt−i + ϵt (2)

Yt = α+

p∑
i=1

βiYt−i +

p∑
i=1

γiXt−i + ϵt (3)

Here, α is the intercept term, βi & γi are the coefficients
of the lagged values of Yt and Xt respectively, and ϵt is the
error term.

We compare these models using hypothesis tests like F-
test or the Wald method and reject outcomes with p ≥ 0.05.
These equations can be extended to include other control
variables Zt, as is typical in real-world networks with multiple
influences.

We normalize W to obtain the normalized weight matrix
W̃ .

W̃ij =
wij√
dout
i · din

j

(4)

Here, din
i represents the in-degree and dout

i represents the
out-degree of the node. For ease of notation, we will simply
notate W̃ as W .

C. Network Analyses

We now run some analyses on G to understand its proper-
ties.

1) Centrality Measures: In network analysis, centrality
measures are used to identify the most important nodes within
a network. Specifically, we look at the degree centrality (num-
ber of direct connections a node has), betweenness centrality
(number of times a node acts as a bridge along the shortest
path between two other nodes), closeness centrality (how close
a node is to all other nodes in the network), and eigenvector
centrality (a nodes influence based on the influence of its
neighbors).

2) Graph Spectral Analysis: We use Graph Signal Pro-
cessing (GSP) to extend the concepts from signal processing
to irregular (graph) domains [40], [41]. The nodes serve as
sampling points (notated as xn[t]) and the graph structure
provides the connectivity.

More formally, given a graph G with an adjacency matrix A,
we can calculate the Graph Laplacian to arrive at the frequency
spectrum of the graph.

First, we compute the degree matrix, given by
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(a) Healthy Individual (b) AD Patient

Fig. 3. Sample of recorded EEG signals for (a) healthy individual and (b) patient with AD.

(a) Healthy Individual (b) AD Patient

Fig. 4. Frequency spectra with the Fourier transform. We can observe the clear differences between the two spectra, with healthy individuals having more
activity in the lower frequency bands

Di,j =

{∑N
n=1 Wi,n, if i = j,

0, otherwise
(5)

This captures the degree of each node of the adjacency
matrix. We then calculate the Laplacian as

L = D −W (6)

We use the Laplacian to build the Graph Fourier Transform
through eigendecomposition, and look at the spectral signature
for the eigenvalues and eigenvectors:

L = Φ∆Φ−1 (7)

Where Φ is the eigenvectors matrix, and ∆ is the diagonal
matrix containing eigenvalues.

A key point of note is that the Laplacian is defined over
undirected graphs where the relationship between nodes is
symmetric so as to allow for decomposition. To preserve
directionality, we use the Hermitian Laplacian LH [42], which
has real eigenvalues and orthogonal eigenvectors.

Fiedler Value: Looking at the eigenvalues obtained from
decomposing the Laplacian, the second smallest one λ2,
known as the Fiedler value or the algebraic connectivity of a
graph plays a significant role in understanding the connectivity
and structure of a graph. It can provide insights into how
tightly the graph is connected (higher Fiedler value) and in
partitioning the graph.

Jordan Decomposition (JD): The JD provides a repre-
sentation of a square matrix in terms of its eigenvalues and
eigenvectors. For a matrix A, it is expressed as A = PJP−1,
where P contains the eigenvectors and J is the Jordan matrix.
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(a) Healthy Individual (b) AD Patient

Fig. 5. Heat map of functional connectome strength, obtained using Pearson Correlation

(a) Healthy Individual (b) AD Patient

Fig. 6. Heat map of functional connectome strength across all patients, obtained using Pearson Correlation

J is block diagonal, with each block corresponding to an
eigenvalue of A. These Jordan blocks capture the structure
of the matrix when A is not diagonalizable.

This is particularly valuable in network analysis for identi-
fying properties like connectivity, robustness and dynamics.
Especially looking at eigenvalue gaps, we can understand
component connectivity (and community structure) through
the Fiedler value. We can also identify similar matrices by
reducing the problem of comparing matrices to comparing
their Jordan forms. It can also show us how the Laplacian
responds to perturbations in the network, which is often
observed in neuro-degenerative diseases. Non-diagonalizable
Laplacians can indicate the presence of sensitive eigenvalues
that are highly affected by small perturbations.

3) Diffusion Processes: In the context of brain networks,
Diffusion processes, specifically Reaction-Diffusion processes
(RD) provide a powerful framework for modeling the dy-
namics of neural activity, information transfer, and signal
propagation [43], [44]. These processes capture both local
interactions between neural populations (reactions) and long-
range communication across brain regions (diffusion).

Considering a neural activity or a signal ui(t), we are
interested in studying how it gives rise to local dynamics
(reaction) f(u) as it propagates (diffuses) through the graph
network G.

This diffusion process is given as:

∂u

∂t
= −DLu (8)
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(a) Healthy Individual (b) AD Patient

Fig. 7. Heat map of effective connectome strength, obtained using Granger Causality. We can observe a lack of connectivity from the T6 and T5 regions
(posterior temporal and parietal occipital junctions) in AD, which signifies impaired memory retrieval and language comprehension. Interestingly, F8 and Fz
have higher connectivity, which shows possible compensatory mechanism at play

(a) Healthy Individual (b) AD Patient

Fig. 8. Plot of the directed effective connectome, obtained using Granger Causality. Opacity signifies strength of connection, with the most opaque one
showing the strongest connection. We observe stronger causation in AD brain networks, showing increased and disorganized connectivity, likely due to the
pathological processes resulting from the disease. In contrast, the healthy brain network is more uniform

(a) Healthy Individual (b) AD Patient

Fig. 9. Plot of the undirected effective connectome, obtained using Granger Causality. Opacity signifies strength of connection, with the most opaque one
showing the strongest connection. The network is symmetrized resulting in an undirected graph. We see similar characteristics as the directed network.
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(a) Healthy Individual (b) AD Patient

Fig. 10. Plot of directed effective connectome across all patients, obtained using Granger Causality. As with the single patient result, the AD network show
stronger causation compared to the healthy network.

(a) Healthy Individual (b) AD Patient

Fig. 11. Plot of undirected effective connectome across all patients, obtained using Granger Causality. Even with the resulting network being symmetric and
undirected, results are similar to the previous figure

The general reaction-diffusion equation for brain networks
can be written as:

∂u

∂t
= −DLu+ f(u) (9)

where u = [u1, u2, . . . , un]
⊤ is the vector of activities at

all nodes, L is the graph (hermitian) Laplacian derived from
W , and f(u) is the vector of reaction terms.

We can use J obtained earlier for stability analysis [45], but
this remains out-of-scope for the current work.

Figures 12, 13, 14, 15, 16 show the results of the pipeline
- from network construction through spectral analysis.

D. Tests on other datasets

To test if the network generation works with other datasets
out-of-box (as posed in RQ3), we run the analysis pipeline on
the Miltiadous (AM) dataset.

The AM data was not prepared for causal analysis, and
as such did not produce viable results out of the box —ad-
ditional processing steps were needed to ensure that the
data is compatible for this purpose. We use a forward-only
FIR bandpass filter (0.5 - 45 Hz) that does not correct for
phase delays introduced in the process, and run Individual
Component Analysis (ICA) decomposition to obtain individual
components. As mentioned earlier, we also plan to consider
TSP data in this step. It works directly, and we plan to run
extensive analysis on this data as part of future work. As an

initial observation, this data is more granular, and reveals better
causal mapping at a lower level compared to the MV dataset.
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(a) Healthy Individual (b) AD Patient
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(a) Healthy Individual (b) AD Patient
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(a) Healthy Individual (b) AD Patient
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