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Abstract—Infectious disease spread forecasting plays a crucial
role in estimating the potential spread of diseases within a pop-
ulation, providing public health officials with an early warning
system that enables them to prepare for and respond to potential
outbreaks effectively. The flu has been a popular disease for
forecasting in the United States due to the availability of data and
recurrent flu seasons. However, a significant drawback of many
existing forecasting systems is their season-dependence, meaning
they primarily consider data from specific seasons. Our project
introduces a comprehensive forecasting model consisting of two
primary components. The first component is a machine learning-
based approach that incorporates neural networks and an Agent-
Based Model (ABM) to predict disease-specific parameters. The
second component utilizes the output parameters from the ABM
to solve the SEIRM model, an extension of the traditional
Susceptible, Infectious, Recovered (SIR) epidemiological model
that includes the Exposure and Mortality rates. We integrated
training data from various sources, including search trends
related to disease symptoms, hospitalization, case reports, and
mortality reports across multiple flu seasons. The model was
tested on unseen flu seasons (2021 - 2022) and evaluated using
the Mean Absolute Error (MAE) and Coverage metrics.

I. INTRODUCTION

Over the past few years, the field of epidemiology has
witnessed substantial growth, largely driven by the global
pandemic. A critical aspect of this discipline is understanding
disease dynamics and transmission patterns, which necessitates
the development of comprehensive and universally applicable
models. Our research aims to take a step towards building
such a model, specifically designed to be robust in the face of
seasonal fluctuations. This approach allows for more accurate
predictions and valuable insights into the spread of infectious
diseases and the management of complex medical conditions.

Our methodology consists of a two-step process. The first
step employs an Agent Based Model (ABM) to estimate the
parameters for the modified Susceptible Exposed Infectious
Recovered Mortality (SEIRM) model, taking into account
disease-specific factors and parameters related to agent initial-
ization. The ABM is a powerful tool for simulating individual
interactions and their aggregate effects on the spread of
diseases, providing a detailed and nuanced understanding of
disease transmission. The second phase involves applying the
SEIRM model, which uses conventional differential equations
along with the parameters generated by the ABM. This com-
bination allows for the estimation of disease spread within a
specific region over a designated time period, offering insights
into the possible trajectory of an outbreak.

A primary objective of our model is its adaptability across
different seasons. To achieve this, it is essential to consider
data collected throughout the entire year, independent of the
flu season. This comprehensive approach enables the model
to serve as an effective tool for informing policy decisions
aimed at reducing widespread exposure and mitigating the
impact of infectious diseases. To that end, we train our model
using a variety of data sources, such as case and death records
for each epiweek, symptom surveys, and ILI (Influenza-like
Illness) values for each state in the United States. This wealth
of data allows the model to account for various factors that
influence disease transmission and provides a solid foundation
for accurate predictions.

Focusing on predicting the spread of the flu, our training
data set includes flu data from multiple seasons spanning from
2016 to 2019. Meanwhile, the test data consists of unseen
seasons from 2021 and 2022, which allows us to evaluate the
model’s performance on novel data. This targeted approach
ensures that our model is well-calibrated to provide accurate
predictions and valuable insights into the transmission and
impact of various infectious diseases. We evaluate the test
data through n-week ahead forecasting (n ∈ {1, 2, 3, 4})
and looking at metrics like Mean Absolute Error (MAE) &
Coverage.

Contributions

Our main contributions are the following:
• A modified Agent-Based Model (ABM) building upon

[1] for forecasting seasonal variations of Influenza in the
United States by incorporating data from multiple flu and
non-flu seasons in the training dataset

• A Stochastic SEIRM (Sto-SEIRM) model into the DNN
to account for the inherent randomness and uncertainty
in the spread of infectious diseases∗

• Loss functions to fine-tune predictions from each model
individually

• Improvement over GradABM [1] approach to predict the
mortality along with ILI (Influenza-like Illness).

In summary, our research introduces a robust and adaptable
model that can account for seasonal variations while providing
valuable insights into the spread of Influenza. By combining
the strengths of Agent Based Modeling and the SEIRM model,
we offer a powerful tool that can inform policy decisions and
contribute to the ongoing efforts to control and mitigate the
impact of infectious diseases on a global scale.
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∗ A deviation from our original plan is the use of determin-
istic SEIRM model over Sto-SEIRM model when training.
This has been necessitated due to computational constraints
from the large population size when solving the SDEs, which
is increasing the training time from our experiments.

II. RELATED WORKS

Differential Equation based models (like the popular SIR
model [2] or the Fisher-KPP model [3], built upon partial
derivatives [4]) have been used to describe the temporal dy-
namics of infectious disease spread. An underlying assumption
is that all infected individuals have been observed, which poses
issues when there are cases of under-reporting, especially in
evolving situations like the COVID-19 pandemic, which can
have significant impact [5]. Directly modeling an SIR model
on under-reported data would underestimate the transmission
rate, giving false indications about the severity of disease
spread.

Much research has been done to address this drawback. For
example, [6] proposes a Distributed Infection model where
the susceptible population is split into the observed and
unobserved categories. But since the data from the unobserved
category is not available, even this model can fail. More
recently, other models propose extending the SIR framework
to include the exposed [7] and other parameters to stratify the
populations [8], [9], [10].

Given the algorithmic and computational simplicity of SIR-
like models, they have also been used in hybrid models along
with neural networks in various forecasting problems [11],
and probabilistic Monte Carlo simulation based approaches
[12]. One reason for this simplicity is due to the fact that
the modeling makes assumptions of homogenous transmission
and perfect mixing, which abstracts away the heterogeneity of
contact graphs within a population. This led to the emergence
of agent based models (ABMs), as further discussed in [1].
ABMs can be especially useful in modeling the micro-level
interactions (for counterfactuals) like the effect of policy deci-
sions. A major potential contribution includes an exploration
of the interplay between ABM/ODEs at the micro-macro levels
to better capture the dynamics & network effects of disease
spread. This work has some limitations, which are discussed
towards the end of this section.

As an extension of the hybrid models, approach to disease
spread estimation using ensemble techniques has been widely
popular among the community since the start of COVID-
19. Starting from April 2020, US COVID Forecast Hub
[13] collaborated with more than 90 research groups from
academia, industry and as well as independent groups to col-
lectively share the weekly or monthly COVID-19 predictions
and used an ensemble model which took into account all the
submissions and gave a better predictive model [14] This gave
rise to so many ensemble techniques which could incorporate
different models or predictions and improve the prediction
of the model. One study showed that neural network based
transfer learning can be used from previous pandemics to help
predict multiple diseases occurring in the same timeline such

as COVID-19 and the flu [15]. Although ensemble models
work well in forecasting models, new approaches like Agent
Based Models seem to model the simulation of the interaction
in a population and forecast the disease spread based on this
simulation better than existing traditional Machine Learning
approaches.

Other proposed methods also include the use of Lyapunov
functions to model the dynamics from a chaos theory perspec-
tive [16], the use of Markov Random Fields [17], and adopting
stochastic models for SIR [18] and contact networks [19].

Our proposed approach builds upon the model in [1] by
taking all discussed advantages and limitations into consid-
eration. The proposed model makes use of agent interactions
using ABM and forecasts the disease spread using the SEIRM
to better account for the uncertainty in the disease spread. The
applicability & advantages of the use of stochasticity has been
well discussed in [18], and will be omitted here for brevity. We
further extend the SIR model by including two compartments
- Exposed and Mortality to include additional stages of disease
progression mimicking the real world scenarios.

A. Data

The recent pandemic has underscored the critical impor-
tance of accurate disease spread forecasting, driven in large
part by the availability of vast amounts of diverse data. This
wealth of information, encompassing biological, social media,
geographic, genomics, and satellite imagery data, has been
leveraged extensively for modeling disease transmission at
both micro and macro levels [20].

Data from the Centers for Disease Control and Prevention
(CDC) of the United States [21], which includes hospitaliza-
tion rates, testing data, infection rates, and death rates, has
played a significant role in forecasting efforts. However, recent
studies [20]. have demonstrated that incorporating macro-level
data, such as mobility data, social media analysis, pharma-
ceutical data, and geographical factors like air quality or
wastewater data, can lead to more accurate predictions. This
is because the spread of a disease is influenced by a complex
interplay of these interconnected components.

Our approach primarily focuses on utilizing data from the
CDC for flu-related factors, such as deaths and cases for each
epidemiological week. We also consider Google symptom
survey data to gain further insight into the prevalence of
flu-related symptoms. To generate agent parameters for each
state in our model, we take into account several demographic
factors, such as age distribution, occupation, and household
size data for each US state, sourced from the US Census. By
integrating this diverse range of data sources and carefully
considering the various factors that contribute to disease
spread, we aim to develop a more comprehensive and reliable
model for forecasting the transmission and impact of infectious
diseases.

B. Evaluation

Evaluating the performance of forecasting systems is a
complex and often challenging task, with various metrics
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employed to assess the accuracy and reliability of predictions.
Historically, the logarithmic score has served as a benchmark
for evaluating forecasting systems, but its use requires the
availability of an entire predictive distribution [22]. As a result,
alternative metrics have been developed and adopted by the
forecasting community.

One such metric is the Weighted Interval Score (WIS),
which assesses the consistency of prediction intervals in re-
lation to the ground truth [14]. WIS can be interpreted as
a generalization of absolute error for probabilistic forecast
models, allowing for a more nuanced understanding of model
performance [22]. This metric has gained popularity due to
its ability to provide meaningful insights into the accuracy of
interval forecasts and probabilistic predictions.

Another widely used metric is the Mean Absolute Error
(MAE), which has increasingly been favored over the Mean
Squared Error (MSE) in recent years. The reason for this
preference lies in the fact that MSE tends to penalize outliers
more heavily than MAE, which can lead to an overestimation
of a model’s performance. By contrast, MAE provides a more
balanced assessment, taking into account both the magnitude
and direction of errors, making it a more suitable choice for
evaluating forecasting models in various scenarios.

In summary, the selection of appropriate evaluation metrics
is crucial for understanding the effectiveness and reliability
of forecasting systems. Metrics such as WIS and MAE have
gained prominence due to their ability to provide meaningful
insights into model performance, allowing researchers and
practitioners to make informed decisions when developing and
refining their forecasting methodologies.

III. METHODOLOGY

Our approach is a combination of the below three compo-
nents. We derive & build upon the work done in [1].

Our initial idea has been to utilize Stochastic SEIRM for
reporting all our results, but given the population times and
the inherent nature of the SDE solvers, we encountered longer
training times. This led to a decision to only report evaluation
results for the deterministic version of SEIRM.

We use the ODE component only during the training part
so that it can regularize the short-term predictions.

A. Caliberation Networks (CalibNN)

The primary interface between our model and the real-world
data (discussed in Experiments) is the Caliberation Network
(CalibNN).

As can be seen in the figure 1, we use three variations of
the CalibNN to feed in parameters to our model.

The ABM-CalibNN & ODE-CalibNN have a similar archi-
tecture, as defined in the original work:

• Gated Recurrent Unit (GRU) based encoder-decoder,
which is fed in a time-series data from various sources
to obtain a condensed representation for each time step

• Self Attention layer, which is used to capture long-term
relations and prevent over-emphasis on last terms of
sequence

• Fully connected layer to obtain a single embedding of the
time series.

The first network (ODE-CalibNN) deals with the ODE part
of our model. The outputs of this network are:

• SEIRM parameters β, α, γ, µ
• Boundary conditions defining the initial state of the

SEIRM model
These are fed into SEIRM model along with the population

and time-interval to obtain the compartmentalized predictions
of disease progression, the specifics of which are further
discussed in the upcoming sections.

Similarly, the second network (ABM-CalibNN) deals with
the ABM part of our model. The outputs of this network are
the disease reproduction rate R0, initial infections percentage,
and a transmissibility for the infection.

These parameters are fed to the ABM to model network
interaction effects, further discussed in the upcoming sections.

The third network takes the output from ABM - exposures,
infections, deaths per day - and parameterize it into real-world
like data to allow us to calculate the loss functions, further
discussed in upcoming sections.

B. Agent Based Models (ABM)

Primarily, our approach modifies the Agent Based Model
introduced in [1], and most details are from that work. It
designs the ABM using tensor operations in such a way that
it is end-to-end differentiable.

The micro-interactions between the agents are modeled
through a network graph, and by introducing a deterministic
message-passing system to capture disease transmission,
progression & update stages for a given population. As with
typical epidemiological research, the ABM uses the standard
Transmission Model and a Progression Model. These two
recursively update the state of all agents.

Given a state population N , our model currently considers
the number of agents Na as

Na = 20
√
N (1)

For each agent j ∈ {1, ..., n}, Agent States are denoted by a
3D tensor Xt

j = (aj , d
t
j , e

t
j), at time step t ∈ {0, ...,K}. Here,

aj ∈ {0−10, 11−20, ..., 71−80, 80+} is the age of the agent,
dtj is the current disease state of the agent, etj ∈ {−1, ..., t−1}
is the time step of the last exposure.

The Transmission Model is a parameterized model that
computes the probability of infection transmission as a result
of an interaction between Susceptible and Exposed individuals.
Interaction networks are generated here to represent the sites
of contact between agents that transmit infection, and takes
into account location based proximity as well (household,
work, etc). For every interaction between agents i and j, the
graph evolves at each time step, bound to the parameters of
infectiousness of the pathogen Rt, susceptibility of infectee
i (Si) to transmission, transmissibility of the infector j (Tj),
and the time since exposure of the infector.
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Fig. 1. High level model architecture, showing the ABM and the SEIRM model, and the flow of data into the three caliberation networks, and its further
flow into the ABM and SEIRM modules. Details are explained in the Methodology section.

Once exposed, the agent enters the hierarchy of disease pro-
gression, as defined in the Progression Model which triggers
subsequent changes in the state of the individual to the other
compartments. While this part also uses the SEIRM model, it
is different from our ODE component, and is fully internal to
the ABM. This is parameterized by stage transition times and
mortality rate.

Overall, the interaction networks better inform the S → E
transitions, which make the model better suited for real-world
applications.

In the forward simulation for ABM, we combine the param-
eters discussed above to simulate the disease dynamics over a
time horizon. The details are similar to the original work, and
are being omitted here for brevity.

C. ODE Component

Given the inherent randomness of disease progression, we
expand upon the SIR compartmental model to include two
additional compartments for Exposure and Mortality, and
look into adding stochasticity to better mimic the real-world
scenarios. This led to the Sto-SEIRM model. The model is
based on five compartments: Susceptible (S), Exposed (E),
Infected (I), Recovered (R), and Deceased (M).

We explain the Sto-SEIRM model in terms of drift and
diffusion terms. The drift term represents the deterministic
part of the system, while the diffusion term introduces the
stochastic component.

The overall process is framed as a Stochastic Differential
Equation (SDE) as given below:

dy(t) = f(t, y)dt+ g(t, y)dW (t), (2)

where y(t) = [S(t), E(t), I(t), R(t),M(t)]T represents
the state of the system at time t, f(t, y) is the drift term

representing the deterministic dynamics of the system, and
g(t, y) is the diffusion term representing the effect of the noise.
dW (t) is the vector of independent Wiener processes.

The drift term (f ) represents the deterministic differential
equations, which also is a part of the SEIRM model:

f(t, y) =


−βSI

N
βSI
N − αE

αE − γI − µI
γI
µI

 . (3)

where β is the transmission rate, α is the rate of progression
from Exposed to Infected (inverted incubation), γ is the
recovery rate, µ is the death rate, and N = S+E+I+R+M
is the total population.

The diffusion term (g) represents the stochastic component,
corresponding to the independent Wiener processes for each
compartment. The diagonal elements represent the noise inten-
sities (standard deviations) for the respective compartments,
and the off-diagonal elements are zeros, indicating no corre-
lation between the noise in different compartments. This can
be given by:

g(t, y) =


σS 0 0 0 0
0 σE 0 0 0
0 0 σI 0 0
0 0 0 σR 0
0 0 0 0 σM

 . (4)

dW (t) represents a vector of independent Wiener processes
(also known as Brownian motion), one for each compartment
in the model. In the case of the Stochastic SEIRM model, we
have 5 compartments: S, E, I, R, and M. Thus, dW (t) can be
written as:
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dW (t) =


dWS(t)
dWE(t)
dWI(t)
dWR(t)
dWM (t)

 , (5)

where dWS(t), dWE(t), dWI(t), dWR(t), and dWM (t)
are independent increments of Wiener processes associated
with each compartment. These increments represent the ran-
dom fluctuations in the model due to stochastic effects. The
increments dWi(t), for i ∈ S,E, I,R,M , are typically small
random variables with mean 0 and variance proportional to the
time step ∆t. In a discrete time setting, one can approximate
the Wiener process increments using normally distributed
random variables, i.e., dWi(t) ∼ N (0,

√
∆t).

Given these SDEs, the goal is to generate time-series data
for the given time period t. Since they are inherently non-
differentiable due to the randomness parameter, we employ
approximations to ensure that the overall model remains dif-
ferentiable end-to-end to allow gradient updates. We explored
several approaches for this:

• Stochastic Simulation (Gillespie) Algorithm [23]
• Differentiable SDE solvers with backprop [24]
• RNN based Surrogate models [25]
• Physics Informed VAEs [26]
We found the work by [24] to be most compatible with

our overall approach, and we adopted it using the PyTorch
based library the authors provide.

However, as mentioned earlier, we decided to primarily
report our results using the deterministic version of the SEIRM
model (without the drift & noise terms), given the longer
training times due to the population size & computational
constraints. We intend to include these results in a future
revision.

D. Combining...

The overall architecture has been shown in Figure 1, and
the individual components have been discussed in detail in the
previous sections. This section ties these components together.

We consider three loss functions, for ILI (subscript i) and
deaths (subscript d), and aggregate them to inform our overall
loss. The loss functions (MAE) are generally of the form

L(y, ŷ) = 1

n

n∑
i=1

|ŷi − yi| (6)

with comparisons happening between the following (Realx
is the real world ground truth data):

• (ABMi, ODEi), (ABMd, ODEd)
• (ABMi, Reali), (ABMd, Reald)
• (ODEi, Reali), (ODEd, Reald)

These losses are further used to backprop over the network,
and update the gradients of the entire model, specifically to
CalibNN which contain the components building the parame-
ters that drive the model.

One distinction is that the loss between ODE & real world
data is only backprop’d over the ODE network, and not over
the entire model. This has been done since the ABM model
is already informing the parameters of ODE.

This approach is an improvement over the existing work.

IV. EXPERIMENTS

Our primary goal has been to show that the modified
approach we took gives better results than the existing models,
even when not using the stochastic component as originally
planned. This section describes the experiments we did, and
the data used, along with some results.

A. Data

Our model uses various data sources for flu forecasting
in the United States, focusing on state-level and region-level
information. The first key data source is ILINET [27], which
gathers data from a network of medical care providers outside
of the hospital setting across the country. These providers
collect and share crucial data on the number of patients visiting
them due to Influenza-Like-Illnesses (ILI) categorized by age
groups. This extensive ILI dataset offers valuable insights into
the prevalence and spread of flu-like symptoms within different
regions and states, contributing to the accuracy of our model.

The second primary data source is the Google Search Symp-
tom Dataset [28], which contains symptom-related search
queries from users. By analyzing search trends for common in-
fluenza symptoms such as fever, cough, sore throat, headaches,
fatigue, shortness of breath, weakness, and diarrhea, we can
better understand the relationship between search history and
disease spread. This information helps facilitate the study of
disease dynamics and improves the model’s ability to forecast
flu outbreaks in specific areas.

Lastly, our model incorporates data from the National
Center of Health Statistics (NCHS) Mortality Surveillance
system and the United States CDC in collaboration with
WHO/NREVSS [29]. The NCHS system collects and shares
weekly influenza mortality data for the United States, pro-
viding a clear picture of the impact of flu on the nation’s
population. The CDC, working with WHO/NREVSS, offers
another major state and region-level data source for influenza
cases reported per variant (Influenza A and Influenza B).
By combining these comprehensive data sources, our model
strives to provide accurate and reliable flu forecasts, ultimately
supporting public health efforts to mitigate the impact of
influenza outbreaks.

B. Evaluation Metrics

We use the following metrics to evaluate our performance:
1) Mean Average Error (MAE): Given by the equation

MAE =
1

N

N∑
k=1

|ŷk − yk| (7)

where N is the total number of samples being tested, yk is
the target output value, and ŷk is the predicted output value.
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2) Coverage:

Coverage =

∑N
K=1 lowerbound ≤ yk ≤ upperbound

N
(8)

Given N as the total number of data points, with yk
representing the target output and with , the indicator function,
we calculate the lower bound of the confidence interval (CI)
using the (0.5 - CI/2) quantile prediction, while the upper
bound is determined by the (0.5 + CI/2) quantile prediction.

C. Baseline

Vector Autoregression (VAR) and Seasonal AutoRegressive
Integrated Moving Average with eXogenous regressors (SARI-
MAX) are two powerful time series forecasting techniques that
are widely used in the field of econometrics, finance, and other
domains with time-dependent data.

VAR is a multivariate time series model that captures the
linear interdependencies among multiple time series variables.
It extends the univariate autoregressive (AR) model to a
system of equations, wherein each variable’s future values
are predicted based on its own lagged values and the lagged
values of other variables in the system. This allows for a
more comprehensive understanding of the relationships among
variables and enables better forecasting of their joint behavior
over time.

SARIMAX, on the other hand, is an extension of the
AutoRegressive Integrated Moving Average (ARIMA) model,
a univariate time series model. It incorporates seasonality
by adding seasonal differencing and seasonal autoregressive
and moving average components to the base ARIMA model.
Moreover, SARIMAX allows for the inclusion of exogenous
variables, which are external variables that may influence the
target time series but are not predicted by the model. This
feature makes SARIMAX particularly useful when there is a
need to account for external factors or covariates that could
impact the target variable’s behavior.Both models offer valu-
able forecasting capabilities, with VAR being well-suited for
multivariate time series and SARIMAX tailored for univariate
time series with seasonal patterns and exogenous factors.

D. Results

The model was evaluated for each states and with 1, 2, 3
and 4-week ahead period and the results in tables I and II are
the average performance over all these targets. The baseline
models have a better coverage but very low MAE score. A low
MAE indicates that the model’s point predictions are accurate
and close to the true values, while a high coverage means that
the model’s confidence intervals are capturing the true values
most of the time.

We can observe that our model improves on MAE but the
coverage is less than other baseline model. An ideal combina-
tion would be a low MAE with high coverage, but we see both
values are low, indicating that while the model has relatively
accurate point predictions, the confidence intervals are narrow,
which means that it is underestimating the uncertainty in the
predictions.

We are assuming that fully integrating the stochastic version
of SEIRM would expand the coverage and better account for
uncertainties, but other options such as hyperparameter tuning
(especially for the ODE & other parameters) could help. This
will be explored in future work.

V. DISCUSSION

This section discusses our general approach. Using the data
mentioned earlier, we did the following train-val-test split:

• Train: Epiweeks 201734 to 202049
• Validation: Epiweeks 202050 to 202112
• Test: Epiweeks 202201 - 202240
where the last two digits of the epiweeks represent the week

in a given year.
During training, we observed the aggregate loss to expo-

nentially decrease, as shown in the figure, resulting in a final
loss of around 5.2.

Fig. 2. Train Loss: MAE vs epoch

A main detraction from our initial approach has been adopt-
ing the deterministic SEIRM model instead of the stochastic
one for final result showcase. This is primarily because for a
population of around 5,000 and a time-period of 10 days the
stochastic SEIRM doesn’t converge even after 1 hour in our
experiments. Considering that we are using the ABM network-
ing model in conjunction with the ODE during training, the
overall time per epoch goes out of hand. We intend to explore
faster solvers to improve this for future work.

VI. CONCLUSION

Our research has successfully developed a comprehensive
and adaptable forecasting model for Influenza-like Illnesses,
combining the strengths of Agent-Based Modeling (ABM)
and the modified Susceptible Exposed Infectious Recovered
Mortality (SEIRM) model. By incorporating data from mul-
tiple flu and non-flu seasons, the model has been trained to
be robust against seasonal variations, offering more accurate
predictions and insights into disease spread and management.
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TABLE I
2022 MEAN EVALUATIONS FOR ILI FORECASTING AND COMPARISON OF OUR APPROACH WITH SOME OTHER APPROACHES.

Model 1 week 2 week 3 week 4 week
MAE Coverage MAE Coverage MAE Coverage MAE Coverage

Ours 0.48 0.78 0.46 0.79 0.46 0.74 0.48 0.74
VAR 9.13 0.95 9.31 0.95 9.02 0.93 9.6 0.89

SARIMAX 1.14 0.32 1.14 0.3 1.02 0.28 1.18 0.27

TABLE II
2022 MEAN EVALUATIONS FOR MORTALITY FORECASTING AND COMPARISON OF OUR APPROACH WITH SOME OTHER APPROACHES.

Model 1 week 2 week 3 week 4 week
MAE Coverage MAE Coverage MAE Coverage MAE Coverage

Ours 0.35 0.29 0.42 0.295 0.34 0.31 0.37 0.26
VAR 2.51 0.85 2.54 0.83 2.62 0.82 2.62 0.8

SARIMAX 1.92 0.14 1.89 0.14 1.85 0.13 1.91 0.14

The integration of neural network training with the SEIRM
model accounts for the inherent randomness and uncertainty
in infectious disease transmission. Our methodology includes
tailored loss functions to fine-tune the predictions from each
model individually, providing a significant improvement over
previous approaches, such as GradABM [1], by predicting both
mortality and ILI rates. By evaluating the model on unseen
data from the 2022, we demonstrate the improvement in
existing Agent Based approach and its potential as a valuable
tool for public health officials and policymakers to effectively
prepare for and respond to future disease outbreaks.
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